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Abstract. We present an approach for nonlinear programming (NLP) based on the direct minimization
of an exact differentiable penalty function using trust-region Newton techniques. As opposed to existing
algorithmic approaches to NLP, the approach provides all the features required for scalability: it can efficiently
detect and exploit directions of negative curvature, it is superlinearly convergent, and it enables the scalable
computation of the Newton step through iterative linear algebra. Moreover, it presents features that are
desirable for parametric optimization problems that have to be solved in a latency-limited environment, as
is the case for model predictive control and mixed-integer nonlinear programming. These features are fast
detection of activity, efficient warm-starting, and progress on a primal-dual merit function at every iteration.
We derive general convergence results for our approach and demonstrate its behavior through numerical studies.
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1. Problem Definition and Previous Work. We consider the general nonlinear pro-
gramming (NLP) problem and its parametric version (pNLP),

min
x

f(x) (1.1a)

s.t. h(x) = 0m (λ) (1.1b)

x ≥ 0n (ν). (1.1c)

min
x

f(x, t) (1.2a)

s.t. h(x, t) = 0m (λ) (1.2b)

x ≥ 0n (ν). (1.2c)

Here, x ∈ Rn are primal variables and λ ∈ Rm, ν ∈ Rn are multipliers for the equality
constraints and bounds, respectively, and t ∈ R is a scalar parameter. We note that any NLP
with general inequality constraints can be transformed into this form without destroying the
properties of the approach derived in this work.

Our motivation for considering pNLP is model predictive control (MPC). In this area, we
have recently shown that solving inexactly pNLP successively in t by using one major sequen-
tial quadratic programming (SQP) iteration on the attached NLP is asymptotically stable
[42]. Here we will analyze exclusively NLP, but the application of the resulting algorithms to
pNLP will motivate us seeking them to have certain properties. In particular, a critical factor
in MPC is latency: the time before an improved decision (control) is computed. While in [42]
that is the time it takes to do a QP solve, in this work we aim to reduce this even further for
cases where the dimension of the underlying NLP is very large.

Our objectives in designing the algorithms for such problems are two fold. First, we
seek properties that allow very large NLPs to be solved efficiently. To this end, we seek an
algorithm with global convergence properties and the following features:

i) Superlinear convergence in the primal-dual space.
ii) Scalable step computation. It is matrix-free in that it does not require matrix factor-

izations, it enables use of iterative linear algebra, and it detects and exploits directions
of negative curvature.

∗Preprint ANL/MCS-P3014-0712.
† Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue,

Argonne, IL 60439, USA (vzavala@mcs.anl.gov, anitescu@mcs.anl.gov)

1



2 V. M. ZAVALA AND M. ANITESCU

Second, we seek good properties for pNLP (1.2) in latency-limited environments, such as
MPC, where the problem at t may need to be solved incompletely because of low-latency
requirements before new data comes in and the clock is advanced to t+ ∆t. Yet, even in this
circumstance it is desirable to show improvement in a way that seamlessly transitions into
good NLP convergence properties, so properties (i) and (ii) are still relevant. This occurs, for
example, in MPC when responding to a parametric perturbation, where one restarts relatively
far away from the new optimal manifold. In addition, the latency concern adds the following
objectives

iii) Asymptotic monotonicity in minor iterations. Each minor iteration has small
complexity and makes constant progress in a primal-dual function, at least sufficiently
close to the solution.

iv) Active set detection and warm-start. The algorithm enables the efficient use and
detection of activity.

The main algorithmic frameworks found to date can be broadly categorized as interior-
point (IP), active set SQP, and active set augmented Lagrangian (AL). IP algorithms satisfy
(i) [16]. Property (ii) is currently achieved by using incomplete symmetric indefinite factor-
izations for preconditioning the augmented system, detecting its inertia [35] or testing the
resulting direction for descent [12], and modifying the Hessian matrix to achieve the correct
inertia or other criteria and recalculating the search direction [39, 12]. Another approach con-
sists in using a constraint-projected preconditioned conjugate gradient (PCG) scheme for the
augmented system with constraint preconditioners [18] exploiting negative curvature through
trust-region regularization [40]. While this does not require the factorization of the KKT
matrix, however, it does require the factorization of the constraint preconditioner and thus
does not satisfy (ii). Property (iii) is currently enforced indirectly by using filter mechanisms
and/or primal merit functions [39, 9, 40]. To achieve (i) in this context, however, second-order
corrections, are needed to avoid the Maratos effect [38]. As for property (iv), detection is effi-
cient from cold-start. For warm-starting, reductions in number of iteration count are achieved
by recovering centrality or crossing-over to SQP but this is cumbersome and computationally
costly [21, 41], so IP algorithms do not generally fare well with respect to (iv). SQP algo-
rithms largely mimic the features of IP with two exceptions. Emphasis on exact satisfaction
of the linearized constraints generally requires a factorization, though perhaps only the one of
a constraint preconditioner, so (ii) may not be satisfied. With respect to (iv), cold-start active
set detection is inefficient but warm-start is possible. Detecting multiple changes in activity,
however, is inefficient, so (iv) is not entirely satisfied. AL frameworks can achieve (ii) by
using iterative linear algebra on the Hessian of the augmented Lagrangian [11, 42]. Property
(iii) can be achieved by using the AL function directly as merit function [10]. Property (iv)
can be achieved by using gradient projection methods for the bound-constrained AL subprob-
lems [6, 42]. Property (i), however, is satisfied only when second-order multiplier updates or
linearly-constrained formulations are used [4, 23]. This requires major linear algebra opera-
tions and thus prevents satisfaction of (ii). An alternative is to use primal-dual augmented
Lagrangian functions [20] to compute steps on both primal and dual variables simultaneously,
but it is still not clear how to ensure (ii), (iii), and (iv).

In this work, we build on an interesting class of exact differentiable penalty functions
(EDPFs) that was proposed and analyzed by DiPillo and Grippo for equality-constrained
NLPs [13]. These functions are primal-dual AL functions of the form in (3.4) having the
distinctive feature that they incorporate a penalty term for the norm of the gradient of the
Lagrangian. In addition to the good global convergence properties typical of exact penalty
functions, DiPillo and Grippo’s function has powerful properties that can be exploited to con-
struct algorithms that directly minimize this merit function. This satisfies properties (i) and
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(iii). As for property (ii), the main limitation in designing algorithms based on direct mini-
mization of DiPillo and Grippo’s function is the appearance of complex third-order derivative
terms. While these terms can be shown to vanish at a critical point of the NLP, they greatly
complicate the search because they introduce nonconvexity. Consequently, capabilities to de-
tect and exploit directions of negative curvature are essential in order to enable (ii) for such
EDPFs. As for property (iv), DiPillo and Grippo proposed exact penalty functions to deal
with inequality constraints but these are twice differentiable only in a neighborhood of the
solution thus preventing (iii) and hindering (ii) [31, 14]. A reformulation, central to this work,
that maintains the smoothness of the EDPF by enforcing bound constraints explicitly is pre-
sented by Bertsekas [4, pp.229-230]. The function has the form (3.10). The function is twice
differentiable everywhere thus enabling (iii) and potentially (ii) if capabilities to exploit direc-
tions of negative curvature are devised. Moreover, to put the comparison with other methods
on an equal footing, an efficient method based on such EDPFs should avoid evaluation of third
derivatives without hindering (i) or global convergence.

In this work, we demonstrate that one can construct EDPF NLP algorithms capable of
achieving all the properties (i)-(iv) while avoiding the computation of third derivatives and
efficiently handling their nonconvexity. The latter two objectives are accomplished by using a
trust-region/gradient-projection approach similar to [25] around the bound constrained EDPF
formulation (3.13) with EDPF function (3.10). Our contributions are (1) We formalize the
properties of the EDPF to establish conditions under which first- and second-order conditions
for critical points of the NLP and of the bound constrained EDPF (3.13) coincide in the case of
inequality constraints. This extends existing results for the case of equality constraints [4, 13].
(2) We derive formulas for the approximate Hessian and the reduced approximate Hessian for
the EDPF and discuss their asymptotic convergence properties to the exact counterparts. (3)
We demonstrate that superlinear and global convergence can be achieved using a trust-region
Newton framework [25]. (4) We demonstrate that the framework satisfies properties (i)-(iv)
and present numerical examples to illustrate this.

The paper is structured as follows. In Section 2 we introduce basic notation and proper-
ties of the NLP. In Section 3 we reformulate the NLP as a bound-constrained minimization
problem using the EDPF reformulation. In Section 4 we present critical point identification
properties of the reformulation. In Section 5 we present the trust-region Newton algorithm and
convergence results. Numerical results are presented in Section 6. The last section presents
concluding remarks and directions of future work.

2. Basic Properties and Notation. We define the partial Lagrange function of the
NLP (1.1):

L(x, λ) = f(x) + λTh(x). (2.1)

Here, f : Rn → R and h : Rm → Rn are at least three times continuously differentiable. The
first and second derivatives of the Lagrange function are

∇xL(x, λ) = ∇xf(x) +∇xh(x)Tλ (2.2a)

∇λL(x, λ) = h(x) (2.2b)

∇x,xL(x, λ) = ∇x,xf(x) +∇x(∇xh(x)Tλ) (2.2c)

∇λ,xL = ∇xh(x) (2.2d)

∇λ,λL = 0m×m. (2.2e)
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Here, ∇xh(x) ∈ Rm×n. We also define the primal-dual vector wT := [xT , λT ] with w ∈ Rnw

and nw = n+m. With this, we can write

∇wL(w) =

[
∇xL(x, λ)
h(x)

]
(2.3a)

∇w,wL(w) =

[
∇x,xL(x, λ) ∇xh(x)T

∇xh(x) 0m×m

]
. (2.3b)

We denote a solution of the NLP (1.1) using the pair x∗, λ∗ or w∗. When convenient, we will
use the dual vector µ∗ for the bounds explicitly. The Karush-Kuhn-Tucker (KKT) conditions
of the NLP (1.1) are given by

0n = ∇xL(x∗, λ∗)− µ∗ (2.4a)

0m = ∇λL(x∗, λ∗) (2.4b)

0n ≤ x∗ ⊥ µ∗ ≥ 0n. (2.4c)

In compact form,

0n ≤ x∗ ⊥ ∇xL(x∗, λ∗) ≥ 0n (2.5a)

0m = ∇λL(x∗, λ∗). (2.5b)

The first expression above also implies that X∗∇xL(x∗, λ∗) = 0n with X∗ := diag(x∗). We
define the active set A(x∗) := { i ∈ {1..n} | x∗(i) = 0 } and the inactive set I(x∗) where I(x∗)∪
A(x∗) = {1..n} and card(I(x∗)) := n∗d. We also define the inactive (free) vector x∗d ∈ Rn

∗
d

and corresponding null-space or basis matrix for the bound constraints (1.1c) Nx(x∗) ∈ Rn×n∗
d

such that x∗ can be written as x∗ = Nx(x∗)x∗d. In our case, the structure of Nx(·) is trivial.
Using these definitions, we make the following assumptions for first-order necessary conditions
(KKT) and sufficient second-order conditions (SSOC) for the NLP (1.1).

We first assume that any stationary point x∗ of the NLP (1.1) satisfies the linear in-
dependence constraint qualification (LICQ) and strict complementarity (SC). This implies
(Theorem 12.1 in [28]) that there exists a unique Lagrange multiplier λ∗ satisfying the KKT
conditions (2.5). Also, under LICQ and SC we can define the subspace of Rn,

F(x∗, λ∗) := Null [∇xh(x∗)] ∩ S(x∗, λ∗), (2.6)

where

S(x∗, λ∗) :=
{
x ∈ Rn |x(i) = 0, i ∈ A(x∗)

}
. (2.7)

For SSOC, we assume that for a feasible point x∗ there is a Lagrange multiplier λ∗ satisfying
the KKT conditions (2.5) and that

νT∇x,xL(x∗, λ∗)ν > 0, ν ∈ F(x∗, λ∗), ν 6= 0. (2.8)

This implies (Theorem 12.6 in [28]) that x∗ is a strict local solution of the NLP (1.1).
We can also state the SSOC by first restricting ν to the subspace S(x∗, λ∗). Specifically,

we write ν = Nx(x∗)νx, where νx ∈ Rn
∗
d and where the columns of Nx(x∗) form a basis for

the subspace S(x∗, λ∗). With this, the SSOC conditions can be stated for νx ∈ Rn
∗
d such that

Nx(x∗)νx 6= 0 and ∇xh(x∗)Nx(x∗)νx = 0m.
To summarize, we require the following assumptions for the NLP (1.1).
• A1. The functions f(·), h(·) are at least three times continuously differentiable.
• A2. Any stationary point x∗ of the NLP (1.1) satisfies LICQ and SC.
• A3. Any stationary point x∗ of the NLP (1.1) satisfies the SSOC condition (2.8).
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3. Exact Differentiable Penalty Formulation. To explain the derivation of the
EDPF, we use the observation that one can eliminate the inequality constraints of the NLP
(1.1) by using squared slack variables z ∈ Rn [22, 4]. This yields

min
x

f(x) s.t. h(x) = 0m, x = z2. (3.1)

The full Lagrange function of this problem is given by

L̄(x, λ, z, µ) = L(x, λ)− µT (x− z2). (3.2)

A solution x̃∗, λ̃∗, z̃∗, µ̃∗ satisfies the KKT conditions,

0n = ∇xL̄(x̃∗, λ̃∗, z̃∗, µ̃∗) = ∇xL(x̃∗, λ̃∗)− µ̃∗ (3.3a)

0n = ∇zL̄(x̃∗, λ̃∗, z̃∗, µ̃∗) = 2 · µ̃∗Z̃∗ (3.3b)

0m = ∇λL̄(x̃∗, λ̃∗, z̃∗, µ̃∗) = h(x̃∗) (3.3c)

0n = ∇µL̄(x̃∗, λ̃∗, z̃∗, µ̃∗)x̃∗ − (z̃∗)2 = 0. (3.3d)

where Z = diag(z). We can see that at a solution x̃∗, we have z̃∗(i) =
√
x̃∗(i), i = 1, ..., n,

so that x̃∗(i) > 0 implies
√
x̃∗i > 0 and µ̃∗(i) = 0 and vice-versa. In other words, (3.3b) and

(3.3d) represent the complementarity conditions between the gradient of the Lagrangian and
the primal variables (2.5a).

It is not difficult to show that x̃∗ is a stationary point for the reformulated NLP (1.1) if
and only if x̃∗,

√
x̃∗ is a stationary point of the original NLP (3.1). In addition, if the SSOC,

LICQ, and SC hold for the NLP (1.1) at x̃∗ (A2,A3), then these properties are inherited by
(3.1) (see Proposition 1.32 in [4]). Hence, we can solve the NLP (1.1) indirectly by solving
the equality-constrained NLP (3.1).

The squared-slacks reformulation has been widely used particularly in the control com-
munity [29, 15, 27] as a way to eliminate inequality constraints. An important caveat of this
reformulation, however, arises from a computational point of view because the introduction of
squared slacks can lead to numerical instability and poor solver performance [42, 2, 19]. This
is related primarily to the introduction of the complementarity condition (3.3b).

While not directly amenable for computation, Bertsekas noticed that reformulation (3.1)
provides a setting to construct EDPFs. He considered the penalty function of Di Pillo and
Grippo [31] for the equality-constrained NLP minf(x) s.t. h(x) = 0,

Pα,β(w) = L(w) +
1

2
αh(x)Th(x) +

1

2
β∇xL(w)T∇xL(w), (3.4)

where Pα,β : Rnw → R and α, β ∈ R+ are parameters. In condensed form,

Pα,β(w) = L(w) +
1

2
∇wL(w)TKα,β∇wL(w), (3.5)

where

Kα,β =

[
βIn

αIm

]
. (3.6)

We note that the partial Lagrange function of the reformulated problem (3.1) can also be
expressed as

L(z2, λ) = f(z2) + λTh(z2). (3.7)
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The stationarity condition of (3.1) with respect to z is

∇zL(z2, λ) = 2Z
(
∇xf(z2) +∇xh(z2)Tλ

)
. (3.8)

Applying the function (3.4) to problem (3.1), we obtain

P̃α,β(z, λ) = L(z, λ) +
1

2
αh(z2)Th(z2) + 2β

(
∇xf(z2) +∇xh(z2)Tλ

)T
ZZ

(
∇xf(z2) +∇xh(z2)Tλ

)
.

(3.9)

We can see that the last term includes the complementarity condition between the gradient
of the Lagrangian and the primal variables. To prevent divergence of the squared slacks, we
follow [4, pp.229-230] and use an equivalent formulation of the EDPF in terms of x and enforce
x ≥ 0n. This leads to the EDPF,

Pα,β(x, λ) = L(x, λ) +
1

2
αh(x)Th(x) + 2β∇xL(x, λ)TX∇xL(x, λ). (3.10)

In compact form,

Pα,β(x, λ) = L(x, λ) +
1

2
∇wL(x, λ)TKα,β(x)∇wL(x, λ), (3.11)

with

Kα,β(x, λ) =

[
4βX

αIm

]
. (3.12)

We can thus, in principle, solve the original NLP (1.1) by solving the EDPF minimization
problem,

min
x,λ

Pα,β(x, λ) s.t. x ≥ 0n. (3.13)

The KKT conditions for a solution x∗(α, β), λ∗(α, β) are

0n ≤ x∗ ⊥ ∇xPα,β(x∗, λ∗) ≥ 0n (3.14a)

0m = ∇λPα,β(x∗, λ∗). (3.14b)

We define the active set at w∗ as AP (w∗) := { i ∈ 1..nw | w∗(i) = 0}. We also define the

inactive set IP (w∗), where IP (w∗) ∪A(w∗) = {1..nw} and card(I(w∗)) := d, where d are the
number of inactive (free) variables in the primal-dual vector w∗.

The SSOC for the EDPF problem can be stated as,

νT∇w,wPα,β(w∗)ν > 0, ν ∈ SP (w∗), (3.15)

where

SP (w∗) :=
{
w ∈ Rnw |w(i) = 0, i ∈ BP (w∗)

}
(3.16a)

BP (w∗) :=
{
i ∈ AP (w∗) | ∇wP (w∗)(i) > 0

}
. (3.16b)

Several key properties result from the EDPF formulation (3.13). First, the EDPF prob-
lem can be solved as an NLP with box constraints. As we see in Section 5, this enables the
use of trust-region Newton techniques and gradient projection [25] in order to obtain global
and superlinear convergence and fast identification of activity. Second, the objective of (3.13)
is a natural merit function. Improvement of the objective value implies progress on the La-
grangian, primal infeasibility, or dual infeasibility. Consequently, similar to Fletcher’s AL,
direct minimization of the EDPF can in principle avoid the Maratos effect. To obtain these
desirable features, we first analyze the properties of the derivatives of the EDPF and establish
conditions for parameters α, β for which minimizers of (3.13) coincide with those of the NLP
(1.1).
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4. Properties of Exact Penalty Formulation. Throughout this section we simplify
notation as P ← Pα,β(w), ∇L ← ∇L(w), K ← Kα,β(w) and write

P = L+
1

2
∇LTK∇L. (4.1)

We also define ∇P = ∇wP, ∇2P = ∇w,wP and a diagonal matrix Γ ∈ Rnw×nw with entries
Γi,i = 4β, i = 1, ..., n and Γi,i = 0, i = n+ 1, ..., nw. Using these definitions, we have

∇P = ∇L+
1

2
∇(K∇L)∇L+

1

2
∇2LK∇L

= ∇L+∇2LK∇L+
1

2
Γdiag(∇L)∇L, (4.2)

where we use the property

∇(K∇L) = ∇2LK + Γdiag(∇L).

For notational convenience, we define the expanded null-space matrix N := N(w) ∈ Rnw×nd

corresponding to the subspace SP (w) with structure,

N =

[
Nx

Im

]
. (4.3)

Here, the lower corner is the identity because the multipliers λ are free and Nx = Nx(x) is
the null-space matrix defined in Section 2.

We now prove that there exist parameters α, β for which if w∗ is a KKT point of (3.13),
then it is a KKT point of the NLP (1.1). We first need the following property.

Property 1. At any KKT point w∗ of the NLP (1.1) we have that

∇xP (w∗) = ∇xL(w∗) + 2βdiag(∇xL(w∗))∇xL(w∗)

∇λP (w∗) = 0m.

Proof: The result follows because Kα,β(w∗)∇wL(w∗) = 0nw , since 4βX∗∇xL(w∗) = 0n and
∇λL(w∗) = h(x∗) = 0m. �

Theorem 4.1. Assume x∗ is a KKT point of the EDPF problem (3.13). In addition,
assume that LICQ and SC (A2) hold at this point. There exists a scalar β̄ > 0 and, for each
β ∈ (0, β̄], a scalar ᾱ(β) such that for all α ≥ ᾱ(β), x∗ is also a KKT point for the NLP
(1.1).
Proof: To simplify notation we write X = X∗. From (3.14) we have that a KKT point for
(3.13) satisfies 0 ≤ x∗ ⊥ ∇xP (x∗, λ∗) ≥ 0, which implies

√
X∇xP (x∗, λ∗) = 0n. We thus have

0n =
√
X∇xP (w∗)

=
√
X∇xL(w∗) + 4β

√
X∇x,xL(w∗)

√
X
√
X∇xL(w∗) + 2β

√
Xdiag (∇xL(w∗))∇xL(w∗)

0m = ∇λP (w∗) = h(x∗) + 4β∇xh(x∗)
√
X
√
X∇xL(w∗).

We need to show that these two conditions imply h(x∗) = 0 and X∇xL(w∗) = 0n, the KKT
conditions of the NLP. We write the above system as[

In×n + 4β
√
X∇x,xL(w∗)

√
X + 2βdiag (∇xL(w∗)) α

√
X∇xh(x∗)T

4β∇xh(x∗)
√
X Im×m

]
·

·
[ √

X∇xL(w∗)
h(x∗)

]
=

[
0n
0m

]
. (4.4)
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We define H = In×n + 4β
√
X∇x,xL(w∗)

√
X + 2βdiag (∇xL(w∗)). The result follows if the

matrix on the left-hand side is nonsingular. We let β̄ > 0 be such that for all β ∈ (0, β̄] the
matrix in the upper left corner is positive definite. In this case, we can apply Schur elimination
to obtain

√
X∇xL(w∗) = −αH−1

√
X∇xh(x∗)Th(x∗), (4.5)

and

0m = h(x∗)− 4αβ∇xh(x∗)
√
XH−1

√
X∇xh(x∗)Th(x∗)

=
[
4αβ∇xh(x∗)

√
XH−1

√
X∇xh(x∗)T − Im×m

]
h(x∗). (4.6)

For all β ∈ (0, β̄] we can choose ᾱ(β) such that for all α ≥ ᾱ(β) we have that the matrix
above on the left-hand side is positive definite. This implies h(x∗) = 0 and X∇xL(w∗) = 0n.
Furthermore, from Property 1 we have ∇xP (w∗)(i) = ∇xL(w∗)(i) + 2β(∇xL(w∗)(i))

2. We
thus have ∇xP (w∗)(i) = 0 for x(i) > 0, which implies ∇xL(w∗)(i) = 0. For x(i) > 0 we have
∇xP (w∗)(i) > 0, which implies ∇xL(w∗)(i) > 0 for β sufficiently small. �

Condition (4.4) indicates that sufficiently small β exists to make the matrix in the upper
left corner positive definite. Condition (4.6) indicates that, for this β, a sufficiently large α
exists to make the matrix on the left-hand side positive definite. Consequently, we can see
that the critical points of the EDPF coincide with critical points of the NLP as α→ +∞ and
β → 0. Our analysis extends the results of DiPillo and Grippo [13] for the case in which the
exact penalty includes inequalities. Our proof follows along the lines of Proposition 4.15 pro-
vided by Bertsekas [4] for equality-constrained problems. We note that the upper left matrix
in the inequality case becomes In×n + 4β

√
X∇x,xL(w∗)

√
X + 2βdiag (∇xL(w∗)), as opposed

to In×n + β∇x,xL(w∗) for the equality-constrained case. For the equality-constrained case
Bertsekas observed that β can be any non-negative value if ∇x,xL(w∗) is positive definite. In-

terestingly, this situation also applies in our case because the terms
√
X and 2βdiag (∇xL(w∗))

are positive. As opposed to the equality-constrained case, however, β needs to be chosen suf-
ficiently small to enforce ∇xL(w∗)(i) > 0 for x(i) = 0, which restricts β.

The above result also implies that the solution of the EDPF problem identifies the optimal
active set of the NLP. Consequently, A(x∗) = AP (w∗) because λ∗ are free. This also implies
that the upper n∗d rows of the null-space matrix N(w∗) defined for SP (w∗) correspond to the
null-space matrix Nx(x∗) defined for S(x∗). We also emphasize that given a solution w∗ for the
NLP and corresponding null-space matrix Nx(x∗), we can construct an expanded null-space
matrix N(w∗) (4.3). This observation will be needed in the following analysis.

We now connect the SSOC for the NLP and for the EDPF problem. If f(·) and h(·) are
three times continuously differentiable (A1), the Hessian of the EDPF exists. The Hessian of
the EDPF involves a tensor because of the introduction of the penalty term on the gradient
of the Lagrangian. To enable notation in the Hessian derivation, we use the fact that

∇2P · u = ∇(∇PT · u) (4.7)

for a constant vector u ∈ Rnw . We have,

∇PT · u = ∇LT · u+∇LTK∇2L · u+
1

2
∇LTΓdiag(∇L) · u, (4.8)

and

∇2P · u = ∇2L · u+∇(∇LTK∇2L · u) +
1

2
∇(∇LTΓdiag(∇L) · u). (4.9)
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Expanding terms, we obtain

∇(∇LTK∇2L · u) = ∇(K∇L)∇2L · u+∇(∇2L · u)K∇L
= ∇2LK∇2L · u+ Γdiag(∇L)∇2L · u+∇(∇2L · u)K∇L, (4.10)

and

1

2
∇(∇LTΓdiag(∇L) · u) = ∇2Ldiag(∇L)Γ · u. (4.11)

Merging terms,

∇2P · u = ∇2L · u+∇2LK∇2L · u
+∇2Ldiag(∇L)Γ · u+ Γdiag(∇L)∇2L · u+∇(∇2L · u)K∇L. (4.12)

From this expression we derive the following property of the Hessian and reduced Hessian
matrices for the EDPF.

Property 2. At any KKT point w∗ of the NLP (1.1) with corresponding expanded
null-space matrix N := N(w∗) we have that

(i) ∇2
wP (w∗) = ∇2L+∇2LK∇2L+∇2Ldiag(∇L)Γ + Γdiag(∇L)∇2L (4.13a)

(ii) NT∇2
wP (w∗)N = NT∇2LN +NT∇2LK∇2LN. (4.13b)

Proof: (i) follows because Kλ,β(w∗)∇wL(w∗) = 0nw . (ii) follows because NTΓdiag(∇L) =
0nd×n and Γdiag(∇L)N = 0n×nd

. �

We highlight that the high-order term ∇(∇2
wL(w∗) · u)Kα,β(w∗)∇wL(w∗) vanishes at a

KKT point w∗ of the NLP, thus suggesting (4.13a) as a natural Hessian approximation which
we define as

Q(w) = ∇2L(w) +∇2L(w)K(w)∇2(w)L+∇2L(w)diag(∇L)Γ + Γdiag(∇L)∇2L(w). (4.14)

The corresponding reduced Hessian is NTQ(w)N . In Section 6 we explain how these properties
can be exploited to enable matrix-free implementations.

Another crucial implication resulting from (4.12) and Property 2 is that the Hessian
approximation Q(w) satisfies the Dennis-Moré condition:

(Q(w)−∇2P (w)) · u = ∇(∇2L(w) · u)K(w)∇L(w)
w→w∗

= 0nw . (4.15)

This follows from the fact that the third derivatives of L are uniformly bounded, whereas
K(w)∇L(w) is continuously differentiable, and thus Lipschitz and satisfiesKλ,β(w∗)∇wL(w∗) =
0nw

. We thus obtain that

∇(∇2L(w) · u)K(w)∇L(w) = O(u)O(||w − w∗||)
w→w∗

= 0nw
. (4.16)

The result is stronger than the classical Dennis-Moré condition because convergence is in-
dependent of the direction u. This result will become important in establishing superlinear
convergence results in Section 5. We now prove that there exist α, β such that the reduced
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Hessian matrix of the EDPF is positive definite at w∗ if SSOC are satisfied for the NLP at
this point. We also show that there exist α, β for which positive definiteness of the reduced
Hessian at a KKT point w∗ of the EDPF problem (3.13) implies that this is a strict local
minimum of the NLP. In this sense and under these condition, EDPF is exact, that is it has
local minima where (1.1) does and it will not introduce any additional local minima.

Theorem 4.2. If w∗ is a strict local minimum of the NLP (1.1) satisfying the SSOC
conditions (2.8) (A3), then for every β > 0 there exists ᾱ(β) > 0 such that for all α ≥ ᾱ(β),
w∗ is a strict local minimum of the EDPF problem (3.13), and the reduced Hessian
N(w∗)T∇2Pα,β(w∗)N(w∗) is positive definite. Furthermore, assume w∗ satisfies the KKT
conditions for NLP (1.1) but not the SSOC (2.8). Then, there exists β̄ > 0 such that for each
β ∈ (0, β̄] and α > 0, w∗ is not a strict local minimum of (3.13).
Proof: We define H = ∇2

xL(w∗) and A = ∇xh(x∗). We construct the projected Hessian
νTNT∇2PNν using N = N(w∗) constructed from w∗ and with νT = [νTx νTλ ], where ν ∈ Rd∗

and νx ∈ Rn
∗
d . Because w∗ satisfies the SSOC (2.8), we have that νTxN

T
x HNxνx > 0 for all

Nxνx 6= 0 and ANxνx = 0m. Using Property 2, we have that νTNT∇2PNν has the following
simplified form:

νTNT∇2PNν

=
[
νTxN

T
x νTλ

] [ H AT

A

] [
Nx νx
νλ

]
+
[
νTxN

T
x νTλ

] [ H AT

A

] [
4βX 0

0 αIm

] [
H AT

A

] [
Nx νx
νλ

]
. (4.17)

Expanding terms, we have

νTNT∇2PNν

=
[
νTxN

T
x HNx νx + 2νTλANx νx + 4β(HNxνx +AT νλ)TX(HNxνx +AT νλ)

]
+ ανTxN

T
x A

TANxνx.

If the SSOC hold, the first term in brackets is positive for all Nx νx 6= 0, and we have
νTxN

T
x A

TANxνx = 0. Under this condition and by Debreu’s lemma [17] we have that there
exists ᾱ(β) for all β ≥ 0 such that NT∇2P (w∗)N is positive definite. To establish the second
result, let Nxνx satisfy ANxνx = 0m and νTxN

T
x HNxνx < 0. Setting νλ = 0, we have

νTNT∇2PNν = νTxN
T
x HNx νx + 4βνTxN

T
x XHNx < 0

for any β < 1
4ν

T
xN

T
x HNxνx/ν

T
xN

T
x XHNxνx, which implies that w∗ is not a local minimum.

The proof is complete. �
The above result implies that a point w∗ satisfying the SSOC conditions for the NLP (1.1)

satisfies the SSOC conditions (3.15) for the EDPF problem (3.13) if α, β are chosen sufficiently
large and sufficiently small, respectively. Our proof follows along the lines of Proposition 4.16
in [4], but this is extended to deal with inequality constraints. An important finding resulting
from our analysis of the structure of the reduced Hessian (4.13b) is that the introduction of
inequalities does not alter the positive curvature of the EDPF. Positive definiteness of the
reduced Hessian is also important because this enables the use of PCG to compute truncated
Newton steps.

5. Trust-Region Newton. The results of the previous section indicate that the curva-
ture of the EDPF is benign close to the solution. From the structure of the Hessian (4.12),
however, it is clear that negative curvature is likely to occur along the search. Therefore,
implementations based on line-search methods would be inefficient. We propose to apply a
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trust-region Newton framework to the EDPF problem (3.13) following the developments of
Lin and Moré [25]. In our analysis, we will assume that α, β are chosen such that condi-
tions and results of Theorems 4.1 and 4.2 hold. Consequently, we simplify the notation as
P (·)← Pα,β(·). Lin and Moré’s convergence analysis relies on the exact Hessian of the objec-
tive function. We have extended their results to the particular case of the approximate Hessian
(4.13a) and demonstrate that this approximation does not destroy convergence properties.

We write (3.13) as

min
w

P (w) s.t. w ∈ Ω, (5.1)

where P (·) := Pα,β(·) and Ω := {w |w ≥ l} ⊆ Rnw , where l(i) = 0, i = 1, ..., n and l(i) =
−∞, i = n + 1, ...nw. We have that P (·) is twice continuously differentiable if f(·) and h(·)
in (1.1) are three times continuously differentiable. We also define the projection operator
Proj : Rnw → Ω and the projected gradient as gProj(w). For formal definitions see Section 2
in [25].

Lin and Moré use the concept of exposed faces to characterize the active set. We have
that the face exposed by the gradient −∇wP (w∗) is given by

E[−∇wP (w∗)] =
{
w ∈ Ω |w(i) = 0 if ∇wP (w∗)(i) > 0

}
. (5.2)

Burke and Moré [8] showed that w∗ is a stationary point of (5.1) if and only if w∗ ∈
E[−∇wP (w∗)]. We also have that, if SC holds, w ∈ E[−∇wP (w∗)] ⇐⇒ AP (w∗) ⊂ AP (w).
As shown in Theorem 4.2, there exist α, β such that a point w∗ satisfying SSOC for the original
NLP also satisfies the SSOC for (5.1). The SSOC for (5.1) can also be written as

νT∇2P (w∗)ν ≥ κ‖ν‖2, ν ∈ SP (w∗), κ > 0. (5.3)

In a trust-region framework, we have at each iteration wk ∈ Ω a radius ∆k and a quadratic
model Ψ : Rnw → R of the actual reduction P (wk + s)− P (wk):

Ψk(s) = gk
T
s+

1

2
sTQks. (5.4)

Here, Qk is approximation of the exact penalty Hessian ∇2
wP (wk) given in (4.13a), gk :=

∇wP (wk) is the gradient, and gkProj is the projected gradient. We also define qk(w) := Ψk(w−
wk).

Given a step sk such that wk + sk ∈ Ω and Ψk(sk) < 0, the trust-region bound is updated
according to the reduction ratio

ρk =
P (wk + sk)− P (wk)

Ψk(sk)
. (5.5)

Since the step is chosen such that ρk > 0, Ψk(sk) indicates a reduction of the actual function.
The iterate is updated using ρk according to

wk+1 =

{
wk + sk if ρk > η0
wk if ρk ≤ η0

, (5.6)

for η0 > 0. The trust-region bound is updated according to the following rule:

∆k+1 ∈


[
σ1 ·min{‖sk‖,∆k}, σ2∆k

]
if ρk ≤ η1[

σ1∆k, σ3∆k
]

if ρk ∈ (η1, η2),[
∆k, σ3∆k

]
if ρk ≥ η2

(5.7)
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where η1 < η2 < 1 and σ1 < σ2 < 1 < σ3.
To obtain the search step sk, we first compute the Cauchy step skc by performing projected

line searches on the step size κc ∈ [0, 1],

skc = Proj(wk − κc∇wP (wk))− wk, (5.8)

until the following conditions are satisfied,

Ψk(skc ) ≤ µ0∇wP (wk)T skc , ‖skc‖ ≤ µ1∆k, (5.9)

with µ0, µ1 > 0. The projected search also gives the active set guess AkP := AP (wkc ) with
wkc = wk + skc . We also define the inactive set Ik = I(wkc ) . An important property is that
if any sequence wk converges to a stationary point w∗ and wk lands on E[−∇wP (w∗)], then
the Cauchy point xk + skc remains on E[−∇wP (w∗)] (see Theorem 3.2 in [25]).

We now seek a step sk that improves the Cauchy step in the sense that

Ψk(sk) ≤ µ0Ψk(skc ), wk + sk ∈ Ω. (5.10)

Given this step, we check the reduction ratio (5.5), accept or reject the step (5.6), and update
the trust-region radius (5.7). This gives rise to a basic trust-region method. Theorem 3.3 in
[25] states that if the steps sk generated by the trust-region method satisfy

AP (wkc ) ⊂ AP (wk + sk) (5.11)

for k ≥ 0, then if {wk} converges to w∗, there is an index k0 such that for k ≥ k0 we have
wk ∈ E[−∇wP (w∗)] and wk + sk ∈ E[−∇wP (w∗)]. This property is essential to guarantee
local convergence.

We refine the Cauchy point wkc while satisfying conditions (5.10) and (5.11) in order to
preserve global convergence. Specifically, Lin and Moré suggest the following procedure. At
each major iteration k we compute minor iterates wk0 , ..., w

k
`+1 with wk0 := wkc and wk := wk`+1.

For each minor iterate j = 0, ..., `+ 1 we require that

wkj ∈ Ω, AP (wkc ) ⊂ AP (wkj ), ‖wkj − wk‖ ≤ µ1∆k, (5.12)

and

qk(wkj+1) ≤ qk(wkj ) + µ0 ·min
{
∇wqk(wk)T (wkj+1 − wkj ) , 0

}
. (5.13)

To satisfy these conditions, we require a descent direction for qk(·). To this end we use the
trust-region quadratic program (QP),

min
sk

gk
T
sk +

1

2
sk
T
Qksk (5.14a)

s.t. sk(i) = 0, i ∈ AP (wkj ) (5.14b)

‖Dksk‖ ≤ ∆k, (5.14c)

where Dk is a preconditioning matrix for Qk. Descent directions can be obtained by using
Steihaug’s PCG approach [36]. At each minor iterate j, we define the null space matrix

Nk
j ∈ Rn×d

k
j consistent with AP (wkj ) and the reduced-space step skd ∈ R

dkj so that skj = Nk
j s

k
d.

The QP takes the form

min
skd

gkd
T
skd +

1

2
skd
T
Qkds

k
d (5.15a)

s.t. ‖DkNk
j s

k
d‖ ≤ ∆k. (5.15b)
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Here Qkd = Nk
j
T
QkNk

j , gkd = Nk
j
T
gk are the reduced approximate Hessian and reduced

gradient, respectively. The PCG search iterates i > 0 are terminated by generating step
skj := Nk

j s
k
d,i if

C-i) a descent step is found,
C-ii) the step hits the trust-region radius, or
C-iii) negative curvature is detected.
A final step sk`+1 is considered successful from a global convergence point of view if it satisfies
(5.10). This condition can be enforced by performing projected searches along step each step
skj ,

skj ← Proj(wk + κskj )− wk, (5.16)

where κ ∈ [0, 1] is the step length, and stopping when (5.12) and (5.13) are satisfied. The
procedure terminates with a final step sk = sk`+1 = wk`+1 − wk satisfying (5.10).

To enable superlinear convergence, we require the step sk := wk`+1 − wk to satisfy∥∥(Nk
m)T

[
gk +Qksk

]∥∥ ≤ ξk‖(Nk
m)T gk‖, wk + sk ∈ Ω. (5.17)

To satisfy this condition simultaneously with (5.12)-(5.13), Lin and Moré proposed the follow-
ing approach. Close to the solution, the trust-region constraint is inactive and directions of
negative curvature are not encountered. Consequently, we require that at each minor iterate
wkj , j = 0, ..., `+ 1 is obtained by terminating the PCG search at the minimizer of qk(·). This

amounts to assume that ξk = 0 . This gives sk = wkj+1 − wk. We perform a line-search along

this step to stay inside Ω, in order to satisfy (5.13), and such that AP (wkj+1) has at least one

more active variable than AP (wkj ) such that

AP (wkj ) ⊂ AP (wkj+1) (5.18)

This procedure implicitly satisfies (5.12). In the worst case, this procedure terminates with
all variables active and for which condition wk + sk ∈ Ω is satisfied trivially.

The above procedure gives the major step sk. We next compute the reduction (5.5). If
the first condition in (5.6) is satisfied, we accept the step wk+1 = wk + sk; otherwise it is
rejected. Finally, we update the trust-region radius ∆k+1 following (5.7). The trust-region
Newton (TRN) algorithm is summarized below.

Trust-Region Newton Algorithm
Assume given algorithmic parameters η0, η1, η2, σ1, σ2, µ0, µ1, and `.

1. Initialization. Start with w0 and ∆0 at k = 0. DO for k > 0:
2. Major Step Test. If wk is a stationary point, STOP.
3. Cauchy Search. Compute Cauchy step sck and active set AP (wkc ) from (5.8), and

perform line-search until conditions (5.9) are satisfied. Define step wkc ← wk + skc .
4. Refinement Search. Start at wk0 := wkc . DO for j = 0, ..., `+ 1:

4.1. PCG Step. At AP (wkj ) apply Steihaug’s PCG search on (5.15), and terminate

with skd if either (C-i),(C-ii), or (C-iii) holds.
4.2. Minor Step Test. Set wkj+1 ← wkj + Nk

j s
k
d. If improvement over Cauchy (5.9)

and (5.11) are satisfied, STOP refinement search, set sk = wkj+1 − wk, and GO
TO 5.

4.3. Update Minor Step. Cut step to satisfy (5.12), (5.13), and (5.18), update wkj+1,
set j ← j + 1, and RETURN TO 4.1.
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5. Update Step. Compute reduction ratio (5.5) update step wk+1 according to (5.6),
and update the trust-region radius ∆k+1 according to (5.7). Set k ← k + 1, and
RETURN TO 2.

We now establish convergence results for the trust-region Newton algorithm. We start by
establishing global convergence. The following result is an adaptation of the result of Burke,
Moré, and Toraldo [7] (see also Theorem 2.1 in [25]) to the EDPF problem.

Theorem 5.1. Let sequence of approximate Hessians {Qk} of the quadratic model (5.4)
be uniformly bounded. i) If w∗ is a limit point of the sequence {wk} generated by the trust-
region Newton algorithm then there is a subsequence {wki} of successful steps which converges
to w∗ with:

lim
i→∞

‖gProj(w
ki
c )‖ = 0. (5.19)

In addition, {wkic } also converges to w∗, and thus w∗ is a stationary point for problem (5.1).
Moreover, ii) if the EDPF parameters α, β satisfy conditions of Theorems 4.1 and 4.2 then
w∗ is also stationary for the NLP (1.1).

Proof: Result i) follows from the proof of Theorem 5.5 in [7]. Result ii) follows from
Theorems 4.1 and 4.2 since we have that for any β, α ≥ ᾱ(β) a stationary point w∗ of the
EDPF problem is also stationary for the NLP. �

The above result implies that every limit point of the sequence {wk} is a stationary point
of problem (5.1).

To establish rate of convergence, we first show that if the approximate Hessian Q(·) is
used, the limit point of the trust-region radius is bounded away from zero. Our analysis follows
that of Lin and Moré [25].

From Theorems 4.1 and 4.2 we have that there exist α, β such that Q(w) is bounded if
∇w,wL(w) is bounded. The point w∗ satisfies the SSOC of the EDPF problem (5.3) if α, β
satisfy conditions of Theorems 4.1 and 4.2. In this case we also have that the limit point w∗

of the trust-region Newton method is a strict local minimum of the original NLP.

To establish rate of convergence we first show that if the approximate Hessian Q(w) is
used, the limit point of the trust-region radius is bounded away from zero.

Theorem 5.2. Let {wk} be the sequence generated by the trust-region Newton method.
Assume that the EDPF parameters α, β satisfy conditions of Theorems 4.1 and 4.2. Assume
that {wk} converges to a limit point w∗ that satisfies the SSOC (5.3). If the minor iterates
satisfy (5.12) and (5.13), then there is an index k0 such that all steps sk with k ≥ k0 are
successful and the trust-region bound ∆k is bounded away from zero.

Proof: The proof follows along the lines of proof of Theorem 5.3 in [25]. We extend this
proof by accounting for the Hessian approximation error ∇2P − Qk. We need to prove that
ρk → 1 so that the trust-region update rules eventually accept all steps with ∆k bounded
away from zero. We have that

ρk − 1 =
P (wk + sk)− P (wk)−Ψk(sk)

Ψk(sk)
(5.20)

and

P (wk + sk) = P (wk) +∇P (wk)sk +
1

2
sk
T∇2P (wk + θsk)sk, θ ∈ (0, 1), (5.21)
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so that

P (wk + s)− P (wk)−Ψk(sk)

=
1

2
sT∇2P (wk + θsk)sk − 1

2
sk
T
Q(wk)sk

=
1

2
sk
T∇2P (wk + θsk)sk − 1

2
sk
T∇2P (wk)sk +

1

2
sk
T∇2P (wk)sk − 1

2
sk
T
Q(wk)sk. (5.22)

Bounding, we have

|P (wk + s)− P (wk)−Ψk(sk)| = (σk1 + σk2 )‖sk‖2, (5.23)

where

σk1 = sup
θ∈(0,1)

{
‖∇2P (wk + θsk)−∇2P (wk)‖

}
(5.24)

follows from Taylor’s theorem and σk2 = ‖∇2P (wk) − Q(wk)‖. Lemma 5.2 and Theorem
5.3 in [25] show that there exists κ0 such that |ρk − 1| ≤ (σk1 + σk2 )/κ0, so that the result is
obtained if {σk1}, {σk2} converge to zero. The sequence {σk1} converges to zero if {sk} converges
to zero because {wk} converges to w∗. Proof of Theorem 5.3 shows that the sequence {sk}
converges to zero. Consequently, the sequence {σk1} converges to zero. As for σk2 , we have that
for α, β satisfying conditions of Theorems 4.1 and 4.2 the limit point w∗ satisfies the KKT
conditions of the NLP; and by Property 2 and condition (4.15) we have that Q(wk) converges
to ∇2P (wk) because {wk} converges to {w∗}. Consequently, {σk2} converges to zero. The
proof is complete. �

We highlight that the convergence result of the Hessian approximation error σk2 is stronger
than that obtained in a classical quasi-Newton setting because convergence is independent of
the step sk. We also emphasize that α, β need to satisfy conditions of Theorems 4.1 and 4.2
in order to guarantee convergence of {σk2} because this can be guaranteed only at a point w∗

satisfying the KKT conditions of the original NLP.
The above result implies that there exists a bound µ∗ < µ1 such that ‖sk‖ ≤ µ∗∆k.

To establish superlinear convergence results, we also require that AP (wk) = AP (w∗) for k
sufficiently large. We can now state the superlinear convergence result.

Theorem 5.3. Let {wk} be the sequence generated by the trust-region Newton method.
Assume that the EDPF parameters α, β satisfy conditions of Theorems 4.1 and 4.2. Assume
that {wk} converges to a solution w∗ that satisfies the SSOC of the penalty problem (5.3). If
the step satisfies ‖sk‖ ≤ µ∗∆k, then the sequence {wk} converges Q-superlinearly to w∗.

Proof: We follow the steps of Theorem 5.4 in [25]. The authors first showed thatAP (wk) =
AP (w∗) for k sufficiently large. We need the following estimate:

‖Nk∇P (wk+1)‖
≤
∥∥Nk [∇P (wk+1)−∇P (wk)−∇2P (wk)sk

]∥∥+
∥∥Nk [∇2P (wk)sk −Q(wk)sk

]∥∥
+
∥∥Nk [∇P (wk) +Q(wk)sk

]∥∥
≤ (εk1 + εk2)‖sk‖.

Here, Nk = NkNkT . The first bound on the right-hand side arises from Taylor’s theorem, the
second bound follows from Property 2 and the Dennis-Moré condition (4.15), and the third
term is bounded above by zero because of the convergence condition (5.17) with ξk = 0. We
also have that {εk1} converges to zero. From Theorems 4.1 and 4.2 we have that the KKT
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conditions of the original NLP hold at w∗ such that {εk2} converges to zero. Theorem 5.3 in
[25] shows that there exists ν0 > 0 such that ‖sk‖ ≤ ν0‖N∗∇P (wk)‖ with N∗ = N∗N∗T . With
this, we obtain

‖Nk∇P (wk+1)‖
‖N∗∇P (wk)‖

≤ (εk1 + εk2)ν0 (5.25)

and

lim
k→∞

‖Nk∇P (wk+1)‖
‖N∗∇P (wk)‖

≤ 0. (5.26)

Lin and Moré show that there exists ν1 > 0 such that

‖NkP (wk+1)‖ ≥ (ν1 − ε1k)‖wk+1 − w∗‖ (5.27)

and

‖N∗P (wk)‖ ≤ ν2‖wk − w∗‖+ εk1‖wk − w∗‖, ν2 = ‖N∗∇2P (w∗)N∗‖. (5.28)

These estimates use w∗ as fixed point and only rely on ∇2P (w∗) which, by Property 2 is equal
to Q(w∗). Consequently,

(ν1 − ε1k)‖wk+1 − w∗‖ ≤ ν2‖wk − w∗‖+ εk1‖wk − w∗‖. (5.29)

Since {εk1} converges to zero we have

lim
k→∞

‖wk+1 − w∗‖
‖wk − w∗‖

≤ 0.

The proof is complete. �
If α, β are appropriately chosen, then superlinear convergence can be achieved. This

implies the surprising result that ignoring the third-order term (last term in (4.12)) does not
destroy superlinear convergence. For the equality-constrained case the result is perhaps less
surprising because the gradient of the Lagrangian converges to zero.

6. Summary of Algorithm and Scalability. In this section we provide the whole set
of algorithmic components in order to highlight the main computational steps and discuss
scalability issues.

6.1. EDPF-TRN Algorithm. Assume given user-provided functions to compute f(x),
c(x),∇xf(x),∇xh(x) · u, ∇xh(x)T · u and ∇x,xL(x, λ) · u.

EDPF-TRN Algorithm
A) Start at primal-dual pair w = [x, λ]. Set α, β and tolerance τP .
B) Call TRN algorithm at w0 ← w and ∆0.

1. Initialization. Start at w0 and ∆0.
2. Major Step Test.

2.1. Compute EDPF P k := Pα,β(wk) from (3.11).
2.2. Compute gradient of EDPF gk := ∇wPα,β(wk) from (4.2) and projected gradient

gProj(w
k).

2.3. If wk is a stationary point set w∗(α, β)← wk, and STOP.
3. Cauchy Search. Compute Cauchy step sck from (5.8). At each line-search step

compute approximate Hessian-vector product Q(wk) · skc using (4.14) and Ψk(skc )
from (5.4), and STOP when (5.11) is satisfied. Update wkc ← wk + skc .
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4. Refinement Search.. Start at wk0 := wkc . DO for j = 0, ..., `+ 1:
4.1. PCG Step. At AP (wkj ) construct N ← Nk

j , compute gkd = NT gk, and call
Steihaug’s PCG search for (5.15) with tolerance ε:

4.1.1. Starting at i = 0 with ri = gkd , di = −ri, zi = 0, and apply preconditioner
yi = D−1 · ri. DO for i > 0:

4.1.2. Form d̄i = NT di and Q(wk) · d̄i using (4.14).
4.1.3. If (C-ii) holds: d̄Ti (Q(wk) · di) ≤ 0 find τ > 0 such that ‖skd‖ = ∆k with

skd = zi + τdi, and STOP.
4.1.4. Set γi ← rTi yi/d̄

T
i (Q(wk) · d̄i).

4.1.5. Set zi+1 ← zi + γidi.
4.1.6. If (C-iii) holds: ‖zi+1‖ ≥ ∆k find τ > 0 such that ‖skd‖ = ∆k with skd =

zi + τdi and STOP.
4.1.7. Set ri+1 ← ri+γiN

T (Q(wk) · d̄i), and apply preconditioner yi+1 = D−1ri+1.
4.1.8. If (C-i) holds: ‖ri+1‖ ≤ ε set sdk = zi+1 and STOP.
4.1.9. Set δi+1 ← rTi+1yi+1/r

T
i yi and di+1 ← −yi+1 + δi+1di and RETURN TO

4.1.2.
4.2. Minor Step Test. Set wkj+1 ← wkj +Nk

j s
k
d. If improvement over Cauchy test (5.9)

and (5.11) are satisfied, STOP refinement search, set sk = wkj+1 − wk, and GO
TO 5.

4.3. Update Minor Step. Cut step to satisfy (5.12),(5.13), and (5.18), update wkj+1,
set j ← j + 1, and RETURN TO 4.1.

5. Update Step. Compute reduction ratio (5.5), update step wk+1 according to (5.6),
and update trust-region radius ∆k+1 according to (5.7). Set k ← k+1, and RETURN
to 2.

C) Given w∗(α, β), check primal-dual infeasibility ‖w∗(α, β)−Proj(w∗(α, β)−∇wL(w∗(α, β)))‖ ≤
τP . If satisfactory, STOP. Otherwise, update α, β and RETURN TO B).

Relationship of the EPDF-TRN Algorithm to Objectives (i)-(iv): For fixed and
appropriate α, β, the EPDF-TRN algorithm does not use third-order derivative information
and exhibits global convergence, Theorem 5.1. In addition, it satisfies (i) from Theorem 5.3.
By design, since it uses only PCG and projected gradient, it is matrix-free and uses iterative
linear algebra, whereas the truncated trust-region allows it to accommodate negative curva-
ture, so (ii) is achieved. Moreover, inertia detection through linear algebra is not necessary,
nonconvexity being handled by the truncated trust-region approach. In the limit of the active
set being correctly detected and being close to the optimal manifold and thus the trust-region
being inactive, as one does a time shift for the parametric problem (1.2), one PCG iteration
will reduce the EPDF for the equality-constrained problem, so monotonic progress will be
achieved, and thus (iii). Moreover, inheriting from its bound-constrained active set philoso-
phy, warm start is intrinsically achieved, whereas active set detection can be efficiently done
by gradient projection so (iv) is achieved.

6.2. Choice of α, β. The success of the EDPF formulation strongly relies on the choice
of α, β. The results of Theorems 4.1 and 4.2 indicate that β should be small and α large
in order to avoid the introduction of spurious critical points that are not minimizers of the
original NLP. To detect a poorly chosen β during the search, Bertsekas suggests monitoring
the curvature of the Hessian of the EDPF. A key advantage of our framework is that this
can be done through the PCG procedure. In particular, if negative curvature is persistently
observed (after a given number of iterations), we can terminate the current search and adjust
α, β. Bertsekas argues that decreases in β should be accompanied by increases in α so as to
keep the product α · β constant. He provides a test to determine appropiate values. This
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follows from the analysis of the QP,

min
d

1

2
dTHd (6.1)

s.t. Ad = 0. (6.2)

Here, the gradient and right-hand side of the constraints can be dropped because the analysis
is of second order. The EDPF of this QP is PQP = 1

2d
THd+λTAd+ 1

2αd
TATAd+ 1

2β(Hd+
ATλ)T (Hd+ATλ). Bertsekas proved that a condition for ∇2P to be positive definite is that

αβ(AAT )2 − αAHAT −AAT > 0m. (6.3)

This is equivalent to testing locally (neglecting third-order terms) for the curvature of the
EDPF (3.4) for an equality-constrained NLP. In our setting, we can determine values for α, β
using the reduced-space QP (5.15) by defining H := NT

x Qx,xNx, A := ANx. Here Nx is the
null-space matrix at the current iterate, and

Qx,x = ∇x,xL+ 4β∇x,xLX∇x,xL+ 4β∇x,xLdiag(∇xL) + 4βdiag(∇xL)∇x,xL, (6.4)

is the x, x component of Q in (4.13a). Another way (post-optimization) of detecting inappro-
priate values of β is convergence to stationary points where some gradients ∇xL(w∗)(i), i ∈
A(x∗) are negative [5]. If this case is encountered, we decrease β and increase α by a propor-
tional ratio.

6.3. Derivatives. We can assemble the gradient and approximate Hessian of the EDPF
(4.13a) times a vector using only vector products with the Hessian of the Lagrangian H =
∇x,xL(x, λ) and the Jacobian of the constraints A = ∇xh(x). Evaluating the gradient of
the EDPF (2.3) requires one Hessian vector product, one Jacobian vector product, and two
Jacobian transpose vector products. We define an arbitrary vector νT = [νTx νTλ ]. We first
note that,

∇2L · ν =

[
H AT

A

] [
νx
νλ

]
=

[
H · νx +AT · νλ

A · νx

]
. (6.5)

Hence, each product requires one Hessian vector product, one Jacobian vector product, and
one Jacobian transpose vector product. Using the above relation, we can see from (4.13a)
that three unique products are needed to form the Hessian approximation of the EDPF. This
can be computed with automatic differentiation (AD) packages at a cost that is proportional
to the evaluation of the objective function and constraints (i.e., O(n) and O(m), respectively)
[28]. We also highlight that coloring only needs to be performed once because the structure
of the Hessian of the EDPF does not change along the search. This is particularly beneficial
when the NLP is solved repetitively as in (1.2). The computation of the reduced Hessian
can proceed without altering the structure of the Hessian by defining νx = N · νd because the
null-space matrix is trivial. These observations are of importance because evaluating the exact
Hessian of the EDPF (i.e., by specifying the EDPF directly) requires a recursive application
of AD. This results from the appearance gradient of the Lagrange function in the definition
of the EDPF.

6.4. Step Computation. The Cauchy point makes progress in the EDPF (e.g., solution
of the NLP) in O(nw) operations. More important, each PCG iteration makes progress in
O(nw) operations with same order for storage requirements. The dominant complexity, as
expected, is the application of the preconditioner D−1 · r.
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As revealed by Theorems 4.1 and 4.2 an existing caveat of the EDPF formulation is
that a large value of α and a small value of β are typically required to enable identification of
critical points of the original NLP. This requirement increases the spectrum of the approximate
Hessian Q and of the reduced Hessian NTQN . Interestingly, however, the spectrum does not
grow as w∗ is approached as in IP methods. General preconditioning techniques that can
be used in the proposed approach include constraint preconditioning, incomplete Cholesky,
and Bunch-Parlett factorization [3, 24, 34] for which parallel implementations exist. The fact
that the PCG matrix is positive definite close to solution also opens the possibility to apply
general algebraic multi-grid preconditioners, which scale as O(nw) [37]. We also highlight
that inertia is detected externally through PCG so that linear algebra solvers do not need to
provide inertia, as is currently required by IP methods [35]. This puts fewer restrictions on
the range of applicable iterative linear algebra solvers.

6.5. Warm-Start and Early Termination. The ability to warm-start is a key prop-
erty of the proposed approach. In particular, because it is based on gradient projection, no
bound multiplier information and no centrality recovery are required, as in IP methods. In
addition, multiple active set changes can be computed at each iteration through the Cauchy
search. The ability to determine activity quickly is particularly relevant in applications that
require early termination, such as model predictive control, state estimation, and rigid body
simulation [15, 42, 1, 26].

7. Numerical Studies. In this section we illustrate the behavior of the proposed frame-
work, and we demonstrate its scalability properties.

7.1. Algorithmic Behavior. We explain the behavior of the algorithmic framework
using the following example:

min (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 + x1x4 (7.1a)

s.t. x1x4 + x1x2 + x3 = 4, (λ) (7.1b)

x1, x2, x3, x4 ≥ 0. (7.1c)

The solution of this problem is x∗ = [1.62 1.62 1.38 0], λ∗ = −7.64, and f(x∗) = 0.91. The
gradient of the Lagrangian is given by

∇xL(x, λ) =


2(x1 − 1) + x4 + λx2 + λx4

2(x2 − 2) + λx1
2(x3 − 3) + λ
x1 + λx1

 . (7.2)

We can see that nonlinear terms exist in λ and x1, x2 and x4. This induces third-derivative
terms in the Hessian of the EDPF. To solve this problem, we set α = 1e+2 and β = 1e−3 and
use tolerance for the projected gradient of 1e−5. We initialize the problem at x0 = [1 1 1 1]
and λ0 = 1. We summarize the convergence history of the trust-region Newton algorithm in
Table 7.1. Here, we define Hk := ∇2P (wk) and Hk

d := NT∇2P (wk)N ; λ(H) is the minimum
eigenvalue of matrix H. We make the following observations:

• The step in k = 1 is obtained from a direction of negative curvature and is accepted
because it leads to ρk > 1. The trust-region radius ∆k is increased. We can also
observe a large error in the Hessian approximation.

• The step in k = 2 is rejected because ρk < 0. The trust-region radius is decreased.
The same behavior is observed until k = 6, when ∆k is sufficiently small to make
ρk > 0. The step at this iteration results from a direction of negative curvature and
is accepted but ∆k is kept constant because ρk is not large enough.
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Table 7.1
Convergence history for example problem.

k P k gkProj ρk ‖sk‖ ‖∆k‖ ‖Qk −Hk‖ λ(Qkd) λ(Hk
d ) card(AkP )

0 25.150 2.0e+2 0
1 3.449 5.9e+1 +3.26 2.5e−1 261.9 2.0e+2 -2.48 -22.67 0
2 3.449 5.9e+1 -0.70 0.0e+0 523.9 5.8e+1 -2.48 -22.67 0
3 3.449 5.9e+1 -0.62 0.0e+0 131.0 5.8e+1 -2.48 -22.67 0
4 3.449 5.9e+1 -0.33 0.0e+0 32.0 5.8e+1 -2.48 -22.67 0
5 3.449 5.9e+1 -0.28 0.0e+0 8.0 5.8e+1 -2.48 -22.67 0
6 1.533 2.5e+1 +0.37 2.0e+0 2.0 5.8e+1 -2.48 -22.67 0
7 0.945 1.6e+0 +0.52 1.9e−1 2.0 2.9e+1 +0.15 -0.39 0
8 0.944 4.9e−1 +0.48 2.6e−3 4.0 1.9e+0 +0.19 +0.37 0
9 0.943 4.5e−1 +0.93 1.4e−3 4.0 4.0e−1 +0.19 +0.25 0
10 0.909 2.3e−1 +0.94 1.8e−1 8.0 3.4e−1 +0.40 +0.40 1
11 0.908 1.7e−6 +0.99 8.7e−3 16.0 3.1e−6 +0.38 +0.38 1

• At iterations k = 7, 8, 9 the algorithm makes progress, and ∆k keeps increasing. At
k = 7 we note that the minimum eigenvalue of the approximate reduced Hessian is
positive while that of the exact is negative. This illustrates how the third-derivative
term can introduce negative curvature.

• At iterations k = 10, 11 the Cauchy step detects the active variable and superlinear
convergence is observed. The error of the approximate Hessian converges to zero, and
ρk converges to one. The Hessian is positive definite.

7.2. Scalability. To demonstrate scalability, we consider the following continuous-time
optimal control problem (OCP):

min

∫ T

0

(
αc · (c(τ)− c̄)2 + αt · (t(τ)− t̄)2 + αu · (u(t)− ū)2

)
dτ (7.3a)

s.t. ċ(τ) =
1− c(τ)

θ
− pk · exp

(
− pE
t(τ)

)
· c(t) (7.3b)

ṫ(τ) =
tf − t(τ)

θ
+ pk · exp

(
− pE
t(τ)

)
· c(τ)− pα · u(τ) · (t(τ)− tc) (7.3c)

c(τ), t(τ), u(τ) ≥ 0, τ ∈ [0, T ] (7.3d)

c(0) = c(τsys), t(0) = t(τsys). (7.3e)

The system is an unstable chemical reactor. The internal time is given by τ covering the pre-
diction horizon [0, T ]. The system states are concentration of reactant c(·) and temperature of
reacting mixture t(·). The control is the cooling water flow u(·). The real time of the system is
τsys and the system states at this time are c(τsys), t(τsys). Symbols αc, αt, αu, pα, pE , tf , tc, pk
are model parameters and can be found in [42]. The objective function is of Bolza type with
the desired end points c̄, t̄, ū. We transform this problem into an NLP by direct transcription
with implicit Euler discretization. We use a mesh with N points each of length ∆τ . To scale
the problem, we increase the number of time steps in the horizon N . The resulting dimensions
of the NLPs are presented in Table 7.2. Here, we present the density in percentage for the
Hessian of the Lagrange function %dens(∇2L) and for the approximate Hessian of the EDPF
%dens(Q). From these numbers we observe that the Hessian is very sparse, which is typical
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Fig. 7.1. Sparsity structure of approximate Hessian Q for NLP with nw = 5, 000.

Table 7.2
Dimensions of discretized OCP.

N n m nw nnz(∇2L) nnz(Q) %dens(∇2L) %dens(Q)
500 1,500 1,000 2,500 10,486 26,492 2.0e−1 4.0e−1

1,000 3,000 2,000 5,000 20,996 52,972 8.4e−2 2.0e−1
5,000 15,000 10,000 25,000 104,996 264,972 1.6e−2 4.0e−2

10,000 30,000 20,000 50,000 209,996 529,972 8.3e−3 2.1e−2

in direct transcription approaches for optimal control [43]. We also observe that, even if the
number of nonzeros in the EDPF Hessian is larger by a factor of 2.5 compared to the Hessian
of the Lagrangian (augmented system), sparsity is preserved. The sparsity structure for a
problem with effective dimension nw = 5, 000 is presented in Figure 7.1, from where we can
also appreciate a banded structure also typical in OCPs [32].

In this study, we test for scalability of the two dominant computational steps. The first
step is the incomplete sparse Cholesky factorization of the approximate Hessian matrix to
generate the preconditioner D for PCG. In our experiments we set the drop tolerance to 1e−4.
We compare against the case in which a full sparse Cholesky factorization of the Hessian is
performed. The second dominant step is the PCG search, which involves recursive backsolves
with the factors of the preconditioner. In the case of full Cholesky factorization a single PCG
iteration (backsolve) is needed. All computations were performed in Matlab.

To solve these problems, we used α = 1e + 6 and β = 1e−1, and we initialize them at a
perturbed point from the optimal solution generated. This perturbation gives an initial error
of the projected gradient of O(103). We use a tolerance for the projected gradient of 1e−5.
All problems were solved in four iterations.

Scalability results as a function of the effective dimension nw are reported in Table 7.3.
Here, we compare the average number of PCG iterations (itcg) per Newton iteration, average
time of PCG procedure (θichol,pcg) per Newton iteration, average time of incomplete factor-
ization (θichol,fact), and average total time per iteration θichol,tot = θichol,pcg + θichol,fact. The
same quantities are presented for the full Cholesky case and are denoted as θchol,pcg, θchol,fact,
and θchol,tot, respectively. The times are illustrated graphically in Figure 7.2. We make the
following observations
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Table 7.3
Average computational times for OCP per Newton iteration.

nw itpcg θichol,pcg θichol,fact θichol,tot θchol,pcg θchol,fact θchol,tot
1,250 17 8.5e−2 3.1e−2 1.1e−1 2.7e−2 3.3e−2 6.0e−2
2,500 24 4.9e−1 1.3e−1 6.2e−1 1.1e−1 1.5e−1 2.6e−1
5,000 29 1.7e+0 4.4e−1 2.2e+0 5.7e−1 8.5e−1 1.4e+0

12,500 31 9.0e+0 1.8e+0 1.1e+1 3.8e+0 8.4e+0 1.2e+1
25,000 31 1.8e+1 5.5e+0 2.4e+1 2.5e+1 5.4e+1 7.8e+1
50,000 31 3.7e+1 1.8e+1 5.5e+1 - - -

125,000 31 9.4e+1 1.1e+2 2.0e+2 - - -
250,000 31 1.9e+2 4.9e+2 6.8e+2 - - -

• The number of PCG iterations increases linearly with nw and settles. This ”settling”
is a particular property of OCPs with Bolza objective because the end point c̄, t̄, ū
is reached after a given number of time steps N and the Krylov subspace remains
constant.

• The total times for full Cholesky are not competitive. This result is clearly seen in the
left panel of Figure 7.2. This illustrates the additional flexibility gained by enabling
relaxation in the incomplete Cholesky factorization procedure.

• From the full Cholesky times we can see that, as expected, the complexity of perform-
ing a single backsolve θchol,pcg is similar to that performing the factorization θchol,fact
particularly because of fill-in effects.

• From the incomplete Cholesky times and the number of PCG iterations we can see
that the time per backsolve can be dramatically reduced. This is particularly evident
in the very large problems where the number of PCG iterations is constant.

• The number of backsolves needed make PCG the dominant expense below the nw =
100, 000 threshold. Factorization becomes dominant above the threshold. This is
illustrated in right panel of Figure 7.2.

To demonstrate the activity detection properties of the framework, we generated an NLP
with nw = 2, 500. We consider two cases. In the first case we start the search at a point
with AP (w0) = 44 and with optimal solution AP (w∗) = 173. In the second case we reverse
the process to generate an initial point with AP (w0) = 173 and AP (w∗) = 44. The conver-
gence history is summarized in Table 7.4. As can be seen, the Cauchy step can make large
adjustments in the active set at each iteration. This is a key advantage over traditional SQP
methods that allow only for one active set change per iteration. Moreover, the number of
PCG iterations remains fairly stable and in fact reduces as the solution is approached (as the
third order term vanishes and the active set settles). This is a key advantage over IP methods
where preconditioner performance degrades as the solution is approached [30].

7.3. Warm-Starting and Early Termination. One of the crucial properties of the
framework is that it enables warm-start and early termination. To demonstrate these capa-
bilities, we consider a receding-horizon OCP framework. This approach is also called model
predictive control (MPC) and is typically used to avoid solving problems with infinite hori-
zons. The OCP (7.3) is solved recursively, as a pNLP (1.2) and the time horizon is shifted
by a factor ∆τ as τsys ← τsys + ∆τ . The initial states are updated using the time-evolving
c(τsys), t(τsys) system states as c(0) ← c(τsys), t(0) ← t(τsys). This update is done until the
system converges c(τsys)→ c̄ t(τsys)→ t̄. The procedure generates continuous-time manifold
c∗(τ), t∗(τ), u∗(τ), τ ∈ [0, τsys], where τsys.

The main obstacle preventing the use of MPC is the computational latency of the OCP
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Fig. 7.2. Average total time per iteration with Cholesky and incomplete Cholesky (left). Average PCG
and incomplete Cholesky times per iteration (middle). Average number of PCG iterations (right).

Table 7.4
active set identification histories for NLP with nw = 2, 500.

Case 1 Case 2

k P k gkProj AP (wk) nkPCG P k gkProj AP (wk) nPCG
0 4.05e+3 4.52e+3 44 - 1.21e+4 2.43e+5 173 -
1 1.14e+2 4.70e+3 44 41 4.96e+2 5.76e+4 0 132
2 1.83e+1 3.72e+3 119 32 9.48e+1 1.86e+3 0 45
3 1.83e+1 1.55e+2 170 27 5.57e+0 3.27e+4 26 37
4 1.83e+1 5.59e−6 173 17 3.98e+0 1.11e+3 43 26
5 - - - 3.98e+0 8.50e−6 44 13

solution. It has been recently shown by the authors that one inexact QP solution (inexact
Newton iteration in case of no inequalities) for the NLP can be sufficient to track the optimal
manifold stably and to ultimately steer the system to the end point [42]. In the case described
here, the use of iterative linear algebra provides significantly more flexibility than does direct
linear algebra for early termination. This flexibility, combined with fast active set identifica-
tion, enables the use of MPC in a much wider range of applications. Recently, we proposed an
augmented Lagrangian NLP reformulation and a projected Gauss-Seidel scheme to solve the
QP inexactly by terminating after a finite number iterations [42]. The approach, however, is
limited in scalability because of the difficulty in preconditioning projected Gauss-Seidel, and
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it requires estimates of the multipliers. The EDPF approach proposed here overcomes these
limitations.

To illustrate the flexibility gained with the ability to warm-start and terminate early, we
performed MPC computations for a problem with N = 100. We compute optimal manifolds
from different starting points by solving the NLPs with a tolerance of 1e−5. This process
required, on average, 4 Newton iterations and 40 PCG iterations per Newton iteration. For
comparison, we consider a suboptimal strategy in which we terminate after 2 Newton iterations
and and 20 PCG iterations per Newton iteration. This reduced the latency by a factor of 4.
The optimal and suboptimal manifolds are presented in Figure 7.3. As can be seen, errors are
present but are stable and the trajectories converge in all cases to the desired end point.
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Fig. 7.3. Phase plane manifolds with tight tolerance and with early termination.

8. Conclusions and Future Work. We have presented a general approach for nonlin-
ear programming based on the direct minimization of an exact differentiable penalty function
using a trust-region Newton setting. We demonstrate that the framework is scalable in the
sense that (i) it is superlinearly convergent, (ii) it is matrix-free and exploits directions of
negative curvature, (iii) it makes direct progress on the merit function in its minor iterations,
and (iv) it enables efficient detection of activity through gradient projection and enables the
use of activity information to warm-start.

As part of future work, we will develop a more general implementation of the framework
allowing for automatic adjustment of the penalty function parameters. In addition, we will
consider more general penalty functions requiring only the α parameter. This function has
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the form [4]:

Pα(w) = L(w) +
1

2
αh(x)Th(x) + 2∇xL(w)T

√
XM(x)M(x)T

√
X∇xL(w), (8.1)

where M(x) ∈ Rn×p, m ≤ p ≤ n is a matrix that makes M(x)∇xh(x) nonsingular. A
typical choice is M(x) = ∇xh(x)T with p = m. The use of this function will enable more
algorithmic flexibility and will limit the spectrum of the Hessian matrix. However, derivative
computations are more complicated and efficient ways for computing them using Hessian-
vector and Jacobian-vector products need to be investigated. These extensions will require
major modifications to existing convergence results because a more intrusive implementation
of the trust-region Newton method and different step acceptance criteria are needed. We will
also investigate different approaches to efficiently solve the trust-region QP [33]. Moreover,
we will investigate efficient preconditioning approaches including of the multilevel type for the
resulting linear systems, which is somewhat facilitated by the fact that we do not need to
detect inertia as is the case for other NLP frameworks. All these additions will enable us to
benchmark against existing NLP solvers.
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